
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 12, Dec. 2019 6145
Copyright ⓒ 2019 KSII

Fast k-NN based Malware Analysis in a
Massive Malware Environment

Jun-ho Hwang1, Jin Kwak2 and Tae-jin Lee1*

1 Department of Information Security, College of Engineering, Hoseo University
Republic of Korea

[e-mail: hwangso93@gmail.com]
2 Department of Cyber Security, College of Information Technology, Ajou University

Republic of Korea
[e-mail: jkwak.security@gmail.com]
*Corresponding author: Tae-jin Lee

Received November 22, 2018; revised June 11, 2019; accepted October 12, 2019;

published December 31, 2019

Abstract

It is a challenge for the current security industry to respond to a large number of malicious
codes distributed indiscriminately as well as intelligent APT attacks. As a result, studies using
machine learning algorithms are being conducted as proactive prevention rather than post
processing. The k-NN algorithm is widely used because it is intuitive and suitable for handling
malicious code as unstructured data. In addition, in the malicious code analysis domain, the
k-NN algorithm is easy to classify malicious codes based on previously analyzed malicious
codes. For example, it is possible to classify malicious code families or analyze malicious code
variants through similarity analysis with existing malicious codes. However, the main
disadvantage of the k-NN algorithm is that the search time increases as the learning data
increases. We propose a fast k-NN algorithm which improves the computation speed problem
while taking the value of the k-NN algorithm. In the test environment, the k-NN algorithm was
able to perform with only the comparison of the average of similarity of 19.71 times for 6.25
million malicious codes. Considering the way the algorithm works, Fast k-NN algorithm can
also be used to search all data that can be vectorized as well as malware and SSDEEP. In the
future, it is expected that if the k-NN approach is needed, and the central node can be
effectively selected for clustering of large amount of data in various environments, it will be
possible to design a sophisticated machine learning based system.

Keywords: k-Nearest Neighbor, Clustering, Malware

http://doi.org/10.3837/tiis.2019.12.019 ISSN : 1976-7277

mailto:t.m.chen@swansea.ac.uk

6146 Hwang et al.: Fast k-NN based Malware Analysis in a Massive Malware Environment

1. Introduction

Modern cyber security threats continue to cause cross-national losses beyond individuals
and corporations. Most of threats are directly or indirectly related to malicious code. In a
commercial environment, malicious code is infected indiscriminately to an unspecified
number of victims, or is continuously attacked by targets designated by APT attacks. In the
case of malicious codes that are distributed in large quantities, the analysis difficulty is
comparatively easy, but it is difficult to cope with all malicious codes due to analysis experts
and financial problems. In case of APT attack, it is difficult to cope with the spread of
malicious code based on unknown zero-day vulnerability of the system. In addition, malicious
codes are becoming increasingly intelligent through obfuscation and logic bombs. Above all,
the security industry is in an environment where a large number of malicious codes are spread,
with more than one million new malicious codes on average daily. The key is that we must
respond to these.
As a result, a variety of response systems have been constructed and studied to cope with
malicious codes, which are key elements of security threats. Various methodologies such as
signature based method and static / dynamic analysis have been proposed. Recently, machine
learning based detection methodologies have been studied. Machine learning-based detection
methodologies focus on prevention, not traditional post-processing. It also analyzes and
classifies large amounts of malicious code through automated processing of appropriate
machine learning algorithms. On the other hand, malicious codes can be regarded as
unstructured data in general, which makes it difficult to handle outliers in case of machine
learning based malicious code classification.
The k-NN algorithm has the advantage of being less influenced by the tendency or outliers of
the data because it is classified into k adjacent label values for Training data. In addition,
simple algorithms result in intuitive results. k-NN is also advantageous in terms of explainable
AI because complex algorithms such as DNN/RNN can not explain the process of deriving the
result. However, the major disadvantage of the k-NN algorithm is that there is a problem of
computation speed as the number of data to be compared increases as the training data
increases. In this paper, we propose a Fast k-NN algorithm to mitigate the computation speed
problem of the k-NN algorithm.
In Section 2 describes related research on SSDEEP and k-NN-based malicious code analysis,
which compares the similarity of data. Section 3 describes the core algorithm of Fast k-NN
proposed in this paper. In Section 4, we compare the performance of the k-NN and the
proposed Fast k-NN algorithm. Section 5 describes the meaning and conclusion of the Fast
k-NN algorithm proposed in this paper.

2. Related Work

2.1 Similarity based Malware Analysis
In a large number of malicious code environments, malicious code is distributed mainly to
indefinitely infect large numbers of malicious codes to an unspecified number of victims. In a
commercial environment, malicious code is mainly analyzed based on signatures due to APT
attacks, but it is a great burden for analysts to analyze all the malicious codes that are being
distributed. Therefore, malicious codes are analyzed and classified by signature based

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 12, December 2019 6147

classification, hash value based classification, and similarity based classification using the
database constructed by analyzing existing malicious codes. In case of similarity - based
classification, malicious code can be classified through similarity between data even though it
does not completely coincide with existing data. In addition, similarity-based classification is
relatively free of variables such as data tendency and data amount compared with pattern
matching method by setting an appropriate threshold value for similarity value. Because of
this advantage, similarity-based malicious code analysis research has been carried out
variously. SSDEEP is a typical malicious code measurement method.
SSDEEP is a similarity measure algorithm based on fuzzy hashing. Fuzzy hashing is an
algorithm proposed by Jesse Korblum in 2006. Unlike general hashing algorithms such as
MD5 and SHA256, it consists of piecewise hashing for dividing data into N-block units and
Rolling hash for calculating hash values of high-speed block units. partial matches can be used
to identify the similarity of data in adjacent block units. Various kinds of researches are being
conducted to classify malicious codes through SSDEEP instead of the signature of malicious
code in a large number of malicious code environments, or in cases where binary data is
mostly similar, such as variant malicious codes.
Y. Li proved that the Fuzzy hashing algorithm is practically applicable to malicious code
similarity analysis, and that it can be practically used for malicious code similarity analysis by
evaluating the fuzzy hashing algorithms in the public malware dataset as a comprehensive
framework [1]. AP Namanya proposed a proof-of-concept technique to detect similarity of
files based on a similarity percentage between known and unknown to reduce the effect of
obfuscation techniques of fuzzy hashing [2]. S. Gupta proposed a framework for linking
malicious code with the Fuzzy Hashing algorithm by constructing high-level Category
Sequences by extracting Windows API Call Sequences for each malicious code group and
mapping the API to 26 categories [3]. Fig. 1 Framework diagram proposed by S. Gupta.

Fig. 1. S. Gupta’s Malware Classification Framework

6148 Hwang et al.: Fast k-NN based Malware Analysis in a Massive Malware Environment

In the study of classifying malicious codes by using SSDEEP, it is most common to identify
the label through fuzzy hash matching such as Fig. 1 Fuzzy Hash Matching is compared with
Hash of Unknown file to be classified using Fuzzy Hash Dataset or training data constructed in
advance like Fig. 1 OFFLINE PHASE. At this time, in order to determine the label of the
Unknown file, it is the same as selecting the k value of the k-NN algorithm to decide how
many similar files to use in the training data. In conclusion, many existing studies [7] [8] [9]
that determine label by comparing with learning data when classifying malicious code using
SSEEP are based on k-NN algorithm. As a result, although the detection performance
generally improves as the learning data increases, there is a problem that the time complexity
required for the final classification increases inevitably.

2.2 k-NN based Malware Analysis
In order to cope with a large number of malicious code environments, researches on
classification of malicious codes using machine learning algorithms are actively conducted.
However, since malicious codes can be regarded as unstructured data in general, there is a
difficulty in handling outliers in the case of machine learning based malicious code
classification. The k-NN algorithm is an intuitive and simple method for classifying
neighboring k neighbors.
The k-NN algorithm has the advantage of being less influenced by the tendency or outliers of
the data because it is classified into k adjacent label values for training data. k-NN is also
advantageous in terms of explainable AI because complex algorithms such as DNN/RNN can
not explain the process of deriving the result.
On the other hand, as training data increases, the time complexity increases by O(n). Because
of this feature, many studies of k-NN algorithm related to high-speed processing have been
carried out considering the total performance comparison problem [10] [11] [12]. J Chen
proposed Two Divide and Conquer Methods for computing approximate k-NN for high-order
data [4]. C. Yu proposed an effective search process by indexing distances to find approximate
data in the k-NN algorithm [5]. Z. Yong proposed a k-NN algorithm by setting representative
points through clustering of data [6]. Z. Young tried to solve the problem of comparing the
total number of k-NNs in an unstructured data environment through clustering. However, he
pointed out that the distance between samples in the same category is larger than the sample
distance in the other category due to the uneven distribution of data among the categories and
not compactness. For example, as in Fig. 2, the distance between and of is longer
than the distance between and of . Therefore, he proposed an algorithm that selects a
center node with the k-mean algorithm like Fig. 2 and then remove points that are moderately
away from the center node. If the gray circle of appropriate size for each cluster is drawn in Fig.
3, the outer data of the circle, and are removed and the operation speed of
k-NN can be improved. In other words, when samples for training data are clustered, it
effectively reduces some data showing an inaccurate peak, and reduces the burden on k-NN's
total similarity calculation time. However, this process is ambiguous in that the model design
is unpredictable and the criteria for uncertain data. It can be operated inappropriately if it is
applied to the malicious code classification domain.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 12, December 2019 6149

Fig. 2. Z. Yong’s Multi-peak Distribution of

Samples

Fig. 3. Z. Young’s Distribution After Sample

Austerity

3. Proposed Model

3.1 Overview
The main process of the Fast k-NN algorithm proposed in this paper can be divided into two
steps. The clustering step is a process that makes the proposed methodology applicable to the
learning data applicable. The fast nearest neighbor search method is a process of applying a
practical methodology to cope with a large increase in training time, which is a main
disadvantage of the k-NN algorithm.

3.1.1 Clustering Step

The main process in the clustering phase is to cluster the training data. The advantage of
clustering of training data is that the time complexity needed for clustering is added in the
training phase, but the relationship between training data can be identified preferentially. Also,
even in the case of clustering time complexity, it may be a burden for a server providing a
model from a commercial environment point of view, but it is not a sensitive issue for a client
that performs only a test with a generated model.
The proposed clustering scheme in this paper does not depend on the algorithm using only a
clustering algorithm with a central node. For example, in this paper, we use a modified method
of selecting arbitrary node as a central node in the single linkage method based on the SSDEEP
similarity in order to derive the test data result, but there are several clustering methods (k-
Means, k-Medoids, etc.).

6150 Hwang et al.: Fast k-NN based Malware Analysis in a Massive Malware Environment

Fig. 4. SSDEEP Similarity Based Single Linkage Clustering

The clustering method used in this paper is processed in the following two phases.

(1) Training data SSDEEP Similarity-based Single Linkage clustering
- One or multiple cluster groups are derived through SSDEEP similarity based single

linkage clustering of Training data.
(2) Random central node selection and group node alignment
- Central nodes are selected randomly in the clustering group, and grouped by group

node and group node not similar to central node by using SSDEEP similarity and
managed by file

As a result, data can be managed by clustering the learning data and arranging the cluster
nodes in order of the cluster nodes that are not similar to the central node for each cluster group
based on the central node. In this process, the process of managing data by sorting in the order
of dissimilar group nodes operates as a core process in order to operate the Fast k-NN
algorithm proposed in this paper.

3.1.2 Fast Nearest Neighbor Search Step
If clustering is used to group the learning data on the basis of similarity, The distance
between the central node (n is the number of groups) and the group nodes

(m is the number of nodes in the group) excluding the central node can be
calculated by preceding the clustering group. In this case, we can use several similarity
measurement techniques for distance d. In this paper, SSDEEP similarity is used. Therefore,
the distance d can be obtained by measuring the similarity of SSDEEP between and files
and follow the formula below.

 (1)

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 12, December 2019 6151

The clustered learning data can be represented as Fig. 5 when the analysis target file Q is located at a
certain point.

Fig. 5. Examples of central node and group node relationships

Fast nearest neighbor search method is a key process of Fast k-NN, and it is a methodology to
inspect objects Q and group nodes that do not need similarity
calculation based on similarity between learning data measured in advance. This can be done
in the following four processes.

a. The closest clusters are checked in order
First, the cluster closest to the analysis target file Q among the clustered learning data starts to
be examined. In this case, the closest clusters are in the descending order of similarity with the
central node (n is the number of groups) of each cluster. By checking the
closest clusters, the process can work effectively for the purpose of searching the most similar
k files. When the learning data is divided into three clusters such as Fig. 6 and the similarities
of the central nodes of each cluster are =70, =50, =40, the cluster order
of , and nodes is examined.

Fig. 6. Examples of analysis node and center node relationships

6152 Hwang et al.: Fast k-NN based Malware Analysis in a Massive Malware Environment

b. From the central node, check the least similar group nodes
Second, if a cluster group to be checked is specified, check the group
node that is the closest to the central node among the clusters.
Assuming that there is a group node in a cluster group such as Fig. 7, when the
similarity is measured with the central node, the distance is checked in the order of
which are the most distant (not similar).

Fig. 7. Example of check sequence in a cluster

c. Exclude nodes beyond a certain distance
Third, basically, similarity calculation for total comparison of all data is the main cause of
performance degradation of k-NN algorithm. Therefore, it is possible to improve the
performance of k-NN efficiently by excluding the nodes that are not within a certain distance
from the check by a simple method when starting the inspection from the group node which is
not similar to the previous process. As shown in Fig. 8, assuming that the file , the central
node , and the group node exist, the minimum distance and can have is

. Similarly, the minimum distance and can have is .
This is shown in Fig. 8.

Fig. 8. Minimum distance

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 12, December 2019 6153

Fast k-NN is effective method to improve algorithm performance. For example, as shown in
Table 1, it is assumed that the similarity between the analysis target file and each node is a
real distance vector, and the maximum similarity that the analysis target file can have is Max
distance vector. If the data is classified into k = 1, the similarity value of 35, which is the
maximum similarity value that can have, is not higher than 70, which is the similarity value
of . Therefore, it can be determined that the similarity calculation of and need not be
performed.

Table 1. Similarity calculation decision table
Node Real distance vector Max distance vector

 70 90
 50 80
 30 35

The proposed Fast k-NN algorithm has previously calculated

 by preceding clustering of training data. Therefore,
the similarity calculation is performed between the analysis target file and the central nodes
of the respective clusters, and it is determined whether the operation is to be performed on
each group node. Also, in the above example data, the k-NN algorithm needs to perform 3
similarity calculations, but the Fast k-NN algorithm can produce the same result with only 2
similarity calculations. Generally, a large amount of data will be composed in one cluster, so it
will work more effectively in a real environment.

d. Check the rest of the cluster group
Fourthly, if one cluster is checked whether all nodes need to be computed or computed, it starts
checking the cluster with a similar central node after the cluster. At this time, if the distance
between the central node and the central node and the closest non-similar node in the same
cluster is lower than the similarity of the k-th node as in the above-described method, it can be
judged that the corresponding cluster need not be entirely examined.
The entire operation sequence of Fast k-NN can be expressed as follows Fig. 9.

READ q
INIT max distance, k-pair
FOR cluster group IN cluster group size

FOR node IN cluster size
IF d(q, center node) – d(node, center node) > max distance THEN

CONTINUE
ELSE

IF d(q, node) < max distance
THEN

UPDATE max distance
UPDATE k-pair

End
End

End
Fig. 9. Fast k-NN process

6154 Hwang et al.: Fast k-NN based Malware Analysis in a Massive Malware Environment

3.2 System Configuration Diagram
Based on the above-mentioned proposals, the designed system is shown in Fig. 10.

Fig. 10. Proposed System Configuration Diagram

In the training phase, the training data is clustered, the center nodes selected for each cluster
are managed by Center Summary Data, and the group nodes in the same cluster are sorted and
arranged in descending order of similarity with the central node. The test data can be analyzed
at high speed using the cluster data and the Fast k-NN algorithm.

4. Experiment
The Fast k-NN proposed in this paper operates basically in linux environment and tested in
virtual environment of windows host. We configured a virtual environment of 2GB RAM and
ubuntu 16.04 environment on 1.80GHz dual core CPU, 8GB ram and windows 10
environment host. Section 4.1 describes the dataset used in this paper and Section 4.2
describes the performance measurement using Fast k-NN.

4.1 Dataset
A total of 6,526,885 data were clustered into 1,237 clusters. It uses a single-linkage clustered
data set provided by Virusshare [13], an open malware collection channel. The training data is
divided into several data sets for testing and is shown in Table 2 below. As a test data, 100
data of some clusters in the data were randomly selected and used.

Table 2. Dataset Configuration
Dataset category Number of SSDEEP Number of clusters

Dataset-1 6,526,885 1,237
Dataset-2 2,997,380 300
Dataset-3 202,443 40
Dataset-4 103,251 25

4.2 Fast k-NN Performance Measurement
The test values were performed from the point of view of the number of similarity calculation
comparisons to classify 100 test data of k-NN and Fast k-NN. Table 3 and Table 4 shows the

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 12, December 2019 6155

number of comparisons of average similarity required for classification of k-NN algorithm for
each data set.

Table 3. The number of k-NN and Fast k-NN similarity comparison operations(k=5)
Dataset category k-NN Fast k-NN Fast k-NN/k-NN

Dataset-1 6,526,885 19.71 0.0003%
Dataset-2 2,997,380 14.82 0.0005%
Dataset-3 202,443 9.98 0.0049%
Dataset-4 103,251 7.94 0.0077%

Table 4. The number of k-NN and Fast k-NN similarity comparison operations(k=3)

Dataset category k-NN Fast k-NN Fast k-NN/k-NN
Dataset-1 6,526,885 12.93 0.0002%
Dataset-2 2,997,380 9.83 0.0003%
Dataset-3 202,443 6.54 0.0032%
Dataset-4 103,251 5.04 0.0049%

In this way, the fast k-NN algorithm proposed in this paper can solve the problem of the time
complexity that increases as the number of data increases due to the total number comparison
of k-NN. As a result, the similarity calculation of SSDEEP took 0.001 seconds to compare one
data. Therefore, the number comparison of k-NN requires a large number of similarity
calculation. In the case of Fast k-NN, the time required for the calculation and the number of
comparisons were increased as the k value increased. However, in the test environment, the
number of comparisons was 2.0e-6 the performance of k-NN can be greatly improved.
Table 5 shows the comparison results of k-NN algorithm and Fast k-NN algorithm per
100,000 data sets for each data set.

Table 5. The number of k-NN and Fast k-NN similarity comparison operations per 100K dataset

Dataset category Num of data Number of comparisons per 100K
Fast k-NN(k=3) Fast k-NN(k=5)

Dataset-1 6,526,885 0.1983 0.3023
Dataset-2 2,997,380 0.3288 0.4957
Dataset-3 202,443 3.2700 4.9900
Dataset-4 103,251 5.0400 7.9400

In the Table 5, it can be seen that the number of comparison operations per 100,000 pieces
decreases as the number of data increases. Dataset-1 is more than 25 times more efficient than
Dataset-4 in terms of number of comparisons per 100,000. In conclusion, the Fast k-NN
algorithm works more efficiently as the size of the dataset increases and as the value of k
decreases. It is considered that these test results can improve the disadvantage of the k-NN
algorithm, which is drastically degraded as the training data increases.

5. Conclusion
The current security industry is in an environment where a large number of malicious codes
are distributed indiscriminately. Malicious code research using machine learning algorithms is
meaningful as a precautionary measure rather than a post - treatment to cope with an
overwhelming number of malicious codes. On the other hand, malicious codes can be
regarded as unstructured data in general, and there is a difficulty in handling outliers in case of

6156 Hwang et al.: Fast k-NN based Malware Analysis in a Massive Malware Environment

machine learning based malicious code classification. The k-NN algorithm has the advantage
of less influence on the tendency or outliers of data compared to other algorithms by
classifying the training data into k adjacent label values. However, the major disadvantage of
the k-NN algorithm is that the time complexity increases significantly as the learning data
increases. Therefore, in this paper, we propose a Fast k-NN algorithm to mitigate the
computation speed problem of the k-NN algorithm. It is expected that the advantages of
unstructured data and computation speed problem will be solved at a certain level.
When the proposed Fast k-NN algorithm is evaluated using 6,526,885 Virusshare datasets, it
can be processed with 2.0e-6 comparisons than the computation required for total comparison
based on the tested environment. The proposed Fast k-NN algorithm has advantages of the
k-NN algorithm and greatly improved the computation speed. It can also be used to search all
data that can be vectorized as well as malware and SSDEEP. In the future, it is expected that if
the k-NN approach is needed, and the central node can be effectively selected for clustering of
large amount of data in various environments, it will be possible to design a sophisticated
machine learning based system.

 Acknowledgement
This work was supported by the National Research Foundation of Korea(NRF) grant funded
by the Korea government(MSIT) (No. NRF-2018R1C1B5029849) and by the National
Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT)(No.
NRF-2017R1E1A1A01075110).

References
[1] Li, Yuping, et al, "Experimental study of fuzzy hashing in malware clustering analysis," in Proc. of

8th workshop on cyber security experimentation and test (cset 15), USENIX Association
Washington, DC, vol. 5, no. 1, 2015. Article (CrossRef Link)

[2] Namanya, Anitta Patience, et al, "Detection of malicious portable executables using evidence
combinational theory with fuzzy hashing," in Proc. of Future Internet of Things and Cloud
(FiCloud), IEEE 4th International Conference on. IEEE, 2016. Article (CrossRef Link)

[3] Gupta, Sanchit, Harshit Sharma, and Sarvjeet Kaur, "Malware Characterization Using Windows
API Call Sequences," in Proc. of International Conference on Security, Privacy, and Applied
Cryptography Engineering. Springer, Cham, pp. 271-280, 2016. Article (CrossRef Link)

[4] Chen, Jie, Haw-ren Fang, and Yousef Saad, "Fast approximate kNN graph construction for high
dimensional data via recursive Lanczos bisection," Journal of Machine Learning Research, vol. 10,
pp. 1989-2012, Sep, 2009. Article (CrossRef Link)

[5] Yu, Cui, et al, "Indexing the distance: An efficient method to knn processing," Vldb, vol. 1, 2001.
Article (CrossRef Link)

[6] Yong, Zhou, Li Youwen, and Xia Shixiong, "An improved KNN text classification algorithm
based on clustering," Journal of computers, pp. 230-237, 2009. Article (CrossRef Link)

[7] Dunham, Ken, "A fuzzy future in malware research," The ISSA Journal, pp. 17-18, 2013.
Article (CrossRef Link)

[8] Raff, Edward, and Charles Nicholas, "Lempel-Ziv Jaccard Distance, an effective alternative to
ssdeep and sdhash," Digital Investigation, vol. 24, pp. 34-49, 2018. Article (CrossRef Link)

[9] Hiruta, S., et al, "Evaluation on malware classification by combining traffic analysis and fuzzy
hashing of malware binary," in Proc. of he International Conference on Security and Management
(SAM). The Steering Committee of The World Congress in Computer Science, Computer
Engineering and Applied Computing (WorldComp), 2015. Article (CrossRef Link)

https://www.usenix.org/conference/cset15/workshop-program/presentation/li
https://doi.org/10.1109/FiCloud.2016.21
https://doi.org/10.1007/978-3-319-49445-6_15
https://dl.acm.org/citation.cfm?id=1755852
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.28.8162
https://doi.org/10.4304/jcp.4.3.230-237
https://cdn.ymaws.com/www.issa.org/resource/resmgr/journalpdfs/fuzzyhash-issa-journal0813.pdf
https://doi.org/10.1016/j.diin.2017.12.004
https://search.proquest.com/docview/1705668441?pq-origsite=gscholar

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 12, December 2019 6157

[10] Liu, Y. D., and H. M. Niu, "KNN classification algorithm based on k-nearest neighbor graph for
small sample," Computer Engineering, pp. 198-200, 2011. Article (CrossRef Link)

[11] Weinberger, Kilian Q., and Lawrence K. Saul, "Fast solvers and efficient implementations for
distance metric learning," in Proc. of the 25th international conference on Machine learning. ACM,
pp. 1160-1167, 2008. Article (CrossRef Link)

[12] Li, Shengqiao, E. James Harner, and Donald A. Adjeroh, "Random KNN feature selection-a fast
and stable alternative to Random Forests," BMC bioinformatics, Article number. 450, 2011.
Article (CrossRef Link)

[13] VirusShare.com - Because Sharing is Caring. https://virusshare.com/
[14] A. Lakhotia, A. Walenstein, C. Miles, A. Singh, “VILO: A Rapid Learning Nearest-neighbor

Classifier for Malware Triage,” Journal in Computer Virology, vol. 9. no. 3. pp. 109-123, 2013.
Article (CrossRef Link)

[15] V. Harichandran, F. Breitinger, I. Baggili, "Bytewise Approximate Matching: The Good, The Bad,
and The Unknown," Journal of Digital Forensics, Security and Law, vol. 11, no. 2, 2016.
Article (CrossRef Link)

[16] F. Breitinger, G. Stivaktakis, H. Baier, "FRASH: A framework to test algorithms of similarity
hashing," Digital Investigation, vol. 10, pp. S50-S58, 2013. Article (CrossRef Link)

[17] H.-S. Park, C.-H. Jun, "A simple and fast algorithm for k-medoids clustering," Expert Systems with
Applications, vol. 36, pp. 3336-3341, 2009. Article (CrossRef Link)

[18] Y. Ye, T. Li, Y. Chen, Q. Jiang, "Automatic malware categorization using cluster ensemble," in
Proc. of the 16th ACM SIGKDD international conference on Knowledge discovery and data
mining, ACM, pp. 95- 104, 2010. Article (CrossRef Link)

[19] S. Pai, F. Di Troia, C. A. Visaggio, T. H. Austin, M. Stamp, “Clustering for malware
classification,” J Comput Virol Hack Tech. vol. 13, no. 2, pp. 95-107, May 2017.
Article (CrossRef Link)

[20] M. Asquith, “Extremely scalable storage and clustering of malware metadata,” Journal of
Computer Virology and Hacking Techniques, vol. 12, no 2, pp. 49-58, May 2016.
Article (CrossRef Link)

[21] J. Saxe, K. Berlin, "Deep neural network based malware detection using two dimensional binary
program features," in Proc. of Malicious and Unwanted 47 Software (MALWARE), 2015 10th
International Conference on, IEEE, pp. 11-20, 2015. Article (CrossRef Link)

[22] G. E. Dahl, J. W. Stokes, L. Deng, D. Yu, "Large-scale malware classification using random
projections and neural networks," in Proc. of Acoustics, Speech and Signal Processing (ICASSP),
IEEE, pp. 3422-3426, 2013. Article (CrossRef Link)

http://en.cnki.com.cn/Article_en/CJFDTotal-JSJC201109069.htm
https://doi.org/10.1145/1390156.1390302
https://doi.org/10.1186/1471-2105-12-450
https://virusshare.com/
https://doi.org/10.1007/s11416-013-0178-3
https://doi.org/10.15394/jdfsl.2016.1379
https://doi.org/10.1016/j.diin.2013.06.006
https://doi.org/10.1016/j.eswa.2008.01.039
https://doi.org/10.1145/1835804.1835820
https://link.springer.com/article/10.1007/s11416-016-0265-3
https://link.springer.com/article/10.1007/s11416-015-0241-3
https://doi.org/10.1109/MALWARE.2015.7413680
https://doi.org/10.1109/ICASSP.2013.6638293

6158 Hwang et al.: Fast k-NN based Malware Analysis in a Massive Malware Environment

Jun-Ho Hwang Author Hwang received bachelor’s degree in information security from
Hoseo university. Currently, the master's course is in progress from hoseo university in
information security. His research is mainly focused on malicious code analysis, machine
learning, image processing.

Jin Kwak is a professor at Dept. Of Cyber Security in Ajou University, Korea. He received
the Ph.D. degree from SKKU, Korea. His research interests include Cryptographic protocols,
Applied security mechanisms for Cloud and Big Data system and so on.

Tae-Jin Lee Professor Lee received bachelor's degree in computer science from POSTECH,
master's degree from Yonsei University, and doctor's degree. He worked in Korea
Information Security Agency for a long time and conducted cyber security research. His
research is mainly focused on malicious code analysis, anomaly analysis, and system
security.

