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Abstract 
 

It is a challenge for the current security industry to respond to a large number of malicious 
codes distributed indiscriminately as well as intelligent APT attacks. As a result, studies using 
machine learning algorithms are being conducted as proactive prevention rather than post 
processing. The k-NN algorithm is widely used because it is intuitive and suitable for handling 
malicious code as unstructured data. In addition, in the malicious code analysis domain, the 
k-NN algorithm is easy to classify malicious codes based on previously analyzed malicious 
codes. For example, it is possible to classify malicious code families or analyze malicious code 
variants through similarity analysis with existing malicious codes. However, the main 
disadvantage of the k-NN algorithm is that the search time increases as the learning data 
increases. We propose a fast k-NN algorithm which improves the computation speed problem 
while taking the value of the k-NN algorithm. In the test environment, the k-NN algorithm was 
able to perform with only the comparison of the average of similarity of 19.71 times for 6.25 
million malicious codes. Considering the way the algorithm works, Fast k-NN algorithm can 
also be used to search all data that can be vectorized as well as malware and SSDEEP. In the 
future, it is expected that if the k-NN approach is needed, and the central node can be 
effectively selected for clustering of large amount of data in various environments, it will be 
possible to design a sophisticated machine learning based system. 
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1. Introduction 

Modern cyber security threats continue to cause cross-national losses beyond individuals 
and corporations. Most of threats are directly or indirectly related to malicious code. In a 
commercial environment, malicious code is infected indiscriminately to an unspecified 
number of victims, or is continuously attacked by targets designated by APT attacks. In the 
case of malicious codes that are distributed in large quantities, the analysis difficulty is 
comparatively easy, but it is difficult to cope with all malicious codes due to analysis experts 
and financial problems. In case of APT attack, it is difficult to cope with the spread of 
malicious code based on unknown zero-day vulnerability of the system. In addition, malicious 
codes are becoming increasingly intelligent through obfuscation and logic bombs. Above all, 
the security industry is in an environment where a large number of malicious codes are spread, 
with more than one million new malicious codes on average daily. The key is that we must 
respond to these. 
As a result, a variety of response systems have been constructed and studied to cope with 
malicious codes, which are key elements of security threats. Various methodologies such as 
signature based method and static / dynamic analysis have been proposed. Recently, machine 
learning based detection methodologies have been studied. Machine learning-based detection 
methodologies focus on prevention, not traditional post-processing. It also analyzes and 
classifies large amounts of malicious code through automated processing of appropriate 
machine learning algorithms. On the other hand, malicious codes can be regarded as 
unstructured data in general, which makes it difficult to handle outliers in case of machine 
learning based malicious code classification. 
The k-NN algorithm has the advantage of being less influenced by the tendency or outliers of 
the data because it is classified into k adjacent label values for Training data. In addition, 
simple algorithms result in intuitive results. k-NN is also advantageous in terms of explainable 
AI because complex algorithms such as DNN/RNN can not explain the process of deriving the 
result. However, the major disadvantage of the k-NN algorithm is that there is a problem of 
computation speed as the number of data to be compared increases as the training data 
increases. In this paper, we propose a Fast k-NN algorithm to mitigate the computation speed 
problem of the k-NN algorithm. 
In Section 2 describes related research on SSDEEP and k-NN-based malicious code analysis, 
which compares the similarity of data. Section 3 describes the core algorithm of Fast k-NN 
proposed in this paper. In Section 4, we compare the performance of the k-NN and the 
proposed Fast k-NN algorithm. Section 5 describes the meaning and conclusion of the Fast 
k-NN algorithm proposed in this paper. 

2. Related Work 

2.1 Similarity based Malware Analysis 
In a large number of malicious code environments, malicious code is distributed mainly to 
indefinitely infect large numbers of malicious codes to an unspecified number of victims. In a 
commercial environment, malicious code is mainly analyzed based on signatures due to APT 
attacks, but it is a great burden for analysts to analyze all the malicious codes that are being 
distributed. Therefore, malicious codes are analyzed and classified by signature based 
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classification, hash value based classification, and similarity based classification using the 
database constructed by analyzing existing malicious codes. In case of similarity - based 
classification, malicious code can be classified through similarity between data even though it 
does not completely coincide with existing data. In addition, similarity-based classification is 
relatively free of variables such as data tendency and data amount compared with pattern 
matching method by setting an appropriate threshold value for similarity value. Because of 
this advantage, similarity-based malicious code analysis research has been carried out 
variously. SSDEEP is a typical malicious code measurement method. 
SSDEEP is a similarity measure algorithm based on fuzzy hashing. Fuzzy hashing is an 
algorithm proposed by Jesse Korblum in 2006. Unlike general hashing algorithms such as 
MD5 and SHA256, it consists of piecewise hashing for dividing data into N-block units and 
Rolling hash for calculating hash values of high-speed block units. partial matches can be used 
to identify the similarity of data in adjacent block units. Various kinds of researches are being 
conducted to classify malicious codes through SSDEEP instead of the signature of malicious 
code in a large number of malicious code environments, or in cases where binary data is 
mostly similar, such as variant malicious codes.  
Y. Li proved that the Fuzzy hashing algorithm is practically applicable to malicious code 
similarity analysis, and that it can be practically used for malicious code similarity analysis by 
evaluating the fuzzy hashing algorithms in the public malware dataset as a comprehensive 
framework [1]. AP Namanya proposed a proof-of-concept technique to detect similarity of 
files based on a similarity percentage between known and unknown to reduce the effect of 
obfuscation techniques of fuzzy hashing [2]. S. Gupta proposed a framework for linking 
malicious code with the Fuzzy Hashing algorithm by constructing high-level Category 
Sequences by extracting Windows API Call Sequences for each malicious code group and 
mapping the API to 26 categories [3]. Fig. 1 Framework diagram proposed by S. Gupta. 
 

 
Fig. 1. S. Gupta’s Malware Classification Framework 
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In the study of classifying malicious codes by using SSDEEP, it is most common to identify 
the label through fuzzy hash matching such as Fig. 1 Fuzzy Hash Matching is compared with 
Hash of Unknown file to be classified using Fuzzy Hash Dataset or training data constructed in 
advance like Fig. 1 OFFLINE PHASE. At this time, in order to determine the label of the 
Unknown file, it is the same as selecting the k value of the k-NN algorithm to decide how 
many similar files to use in the training data. In conclusion, many existing studies [7] [8] [9] 
that determine label by comparing with learning data when classifying malicious code using 
SSEEP are based on k-NN algorithm. As a result, although the detection performance 
generally improves as the learning data increases, there is a problem that the time complexity 
required for the final classification increases inevitably. 
 

2.2 k-NN based Malware Analysis 
In order to cope with a large number of malicious code environments, researches on 
classification of malicious codes using machine learning algorithms are actively conducted. 
However, since malicious codes can be regarded as unstructured data in general, there is a 
difficulty in handling outliers in the case of machine learning based malicious code 
classification. The k-NN algorithm is an intuitive and simple method for classifying 
neighboring k neighbors. 
The k-NN algorithm has the advantage of being less influenced by the tendency or outliers of 
the data because it is classified into k adjacent label values for training data. k-NN is also 
advantageous in terms of explainable AI because complex algorithms such as DNN/RNN can 
not explain the process of deriving the result. 
On the other hand, as training data increases, the time complexity increases by O(n). Because 
of this feature, many studies of k-NN algorithm related to high-speed processing have been 
carried out considering the total performance comparison problem [10] [11] [12]. J Chen 
proposed Two Divide and Conquer Methods for computing approximate k-NN for high-order 
data [4]. C. Yu proposed an effective search process by indexing distances to find approximate 
data in the k-NN algorithm [5]. Z. Yong proposed a k-NN algorithm by setting representative 
points through clustering of data [6]. Z. Young tried to solve the problem of comparing the 
total number of k-NNs in an unstructured data environment through clustering. However, he 
pointed out that the distance between samples in the same category is larger than the sample 
distance in the other category due to the uneven distribution of data among the categories and 
not compactness. For example, as in Fig. 2, the distance between  and  of  is longer 
than the distance between  and  of . Therefore, he proposed an algorithm that selects a 
center node with the k-mean algorithm like Fig. 2 and then remove points that are moderately 
away from the center node. If the gray circle of appropriate size for each cluster is drawn in Fig. 
3, the outer data of the circle,  and  are removed and the operation speed of 
k-NN can be improved. In other words, when samples for training data are clustered, it 
effectively reduces some data showing an inaccurate peak, and reduces the burden on k-NN's 
total similarity calculation time. However, this process is ambiguous in that the model design 
is unpredictable and the criteria for uncertain data. It can be operated inappropriately if it is 
applied to the malicious code classification domain. 
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Fig. 2. Z. Yong’s Multi-peak Distribution of 

Samples 

 
Fig. 3. Z. Young’s Distribution After Sample 

Austerity 

3. Proposed Model 

3.1 Overview 
The main process of the Fast k-NN algorithm proposed in this paper can be divided into two 
steps. The clustering step is a process that makes the proposed methodology applicable to the 
learning data applicable. The fast nearest neighbor search method is a process of applying a 
practical methodology to cope with a large increase in training time, which is a main 
disadvantage of the k-NN algorithm. 
 

3.1.1 Clustering Step 

The main process in the clustering phase is to cluster the training data. The advantage of 
clustering of training data is that the time complexity needed for clustering is added in the 
training phase, but the relationship between training data can be identified preferentially. Also, 
even in the case of clustering time complexity, it may be a burden for a server providing a 
model from a commercial environment point of view, but it is not a sensitive issue for a client 
that performs only a test with a generated model. 
The proposed clustering scheme in this paper does not depend on the algorithm using only a 
clustering algorithm with a central node. For example, in this paper, we use a modified method 
of selecting arbitrary node as a central node in the single linkage method based on the SSDEEP 
similarity in order to derive the test data result, but there are several clustering methods (k- 
Means, k-Medoids, etc.). 
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Fig. 4. SSDEEP Similarity Based Single Linkage Clustering 

 
The clustering method used in this paper is processed in the following two phases. 
 
 
(1) Training data SSDEEP Similarity-based Single Linkage clustering 
- One or multiple cluster groups are derived through SSDEEP similarity based single 

linkage clustering of Training data. 
(2) Random central node selection and group node alignment 
- Central nodes are selected randomly in the clustering group, and grouped by group 

node and group node not similar to central node by using SSDEEP similarity and 
managed by file 

 
As a result, data can be managed by clustering the learning data and arranging the cluster 
nodes in order of the cluster nodes that are not similar to the central node for each cluster group 
based on the central node. In this process, the process of managing data by sorting in the order 
of dissimilar group nodes operates as a core process in order to operate the Fast k-NN 
algorithm proposed in this paper. 
 

3.1.2 Fast Nearest Neighbor Search Step 
If clustering is used to group the learning data on the basis of similarity, The distance  
between the central node (n is the number of groups) and the group nodes 

(m is the number of nodes in the group) excluding the central node can be 
calculated by preceding the clustering group. In this case, we can use several similarity 
measurement techniques for distance d. In this paper, SSDEEP similarity is used. Therefore, 
the distance d can be obtained by measuring the similarity of SSDEEP between  and  files 
and follow the formula below. 
 

                                                        (1) 
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The clustered learning data can be represented as Fig. 5 when the analysis target file Q is located at a 
certain point. 
 

 
Fig. 5. Examples of central node and group node relationships 

 
Fast nearest neighbor search method is a key process of Fast k-NN, and it is a methodology to 
inspect objects Q and group nodes  that do not need similarity 
calculation based on similarity between learning data measured in advance. This can be done 
in the following four processes. 
 
a. The closest clusters are checked in order 
First, the cluster closest to the analysis target file Q among the clustered learning data starts to 
be examined. In this case, the closest clusters are in the descending order of similarity with the 
central node (n is the number of groups) of each cluster. By checking the 
closest clusters, the process can work effectively for the purpose of searching the most similar 
k files. When the learning data is divided into three clusters such as Fig. 6 and the similarities 
of the central nodes of each cluster are =70, =50, =40, the cluster order 
of ,  and  nodes is examined. 

 
Fig. 6. Examples of analysis node and center node relationships 
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b. From the central node, check the least similar group nodes 
Second, if a cluster group to be checked is specified, check the group 
node  that is the closest to the central node among the clusters. 
Assuming that there is a group node  in a cluster group such as Fig. 7, when the 
similarity is measured with the central node, the distance is checked in the order of  
which are the most distant (not similar). 
 

 
Fig. 7. Example of check sequence in a cluster 

 
 
c. Exclude nodes beyond a certain distance 
Third, basically, similarity calculation for total comparison of all data is the main cause of 
performance degradation of k-NN algorithm. Therefore, it is possible to improve the 
performance of k-NN efficiently by excluding the nodes that are not within a certain distance 
from the check by a simple method when starting the inspection from the group node which is 
not similar to the previous process. As shown in Fig. 8, assuming that the file , the central 
node , and the group node  exist, the minimum distance  and  can have is 

. Similarly, the minimum distance  and  can have is . 
This is shown in Fig. 8. 
 

 
Fig. 8. Minimum distance  
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Fast k-NN is effective method to improve algorithm performance. For example, as shown in 
Table 1, it is assumed that the similarity between the analysis target file  and each node is a 
real distance vector, and the maximum similarity that the analysis target file  can have is Max 
distance vector. If the data is classified into k = 1, the similarity value of 35, which is the 
maximum similarity value that  can have, is not higher than 70, which is the similarity value 
of . Therefore, it can be determined that the similarity calculation of  and  need not be 
performed. 
 

Table 1. Similarity calculation decision table 
Node Real distance vector Max distance vector 

 70 90 
 50 80 
 30 35 

 
The proposed Fast k-NN algorithm has previously calculated 

 by preceding clustering of training data. Therefore, 
the similarity calculation is performed between the analysis target file  and the central nodes 
of the respective clusters, and it is determined whether the operation is to be performed on 
each group node. Also, in the above example data, the k-NN algorithm needs to perform 3 
similarity calculations, but the Fast k-NN algorithm can produce the same result with only 2 
similarity calculations. Generally, a large amount of data will be composed in one cluster, so it 
will work more effectively in a real environment. 
 
d. Check the rest of the cluster group 
Fourthly, if one cluster is checked whether all nodes need to be computed or computed, it starts 
checking the cluster with a similar central node after the cluster. At this time, if the distance 
between the central node and the central node and the closest non-similar node in the same 
cluster is lower than the similarity of the k-th node as in the above-described method, it can be 
judged that the corresponding cluster need not be entirely examined. 
The entire operation sequence of Fast k-NN can be expressed as follows Fig. 9. 
 
READ q 
INIT max distance, k-pair 
FOR cluster group IN cluster group size 

FOR node IN cluster size 
IF d(q, center node) – d(node, center node) > max distance THEN 

CONTINUE 
ELSE 

IF d(q, node) < max distance 
THEN 

UPDATE max distance 
UPDATE k-pair 

End 
End 

End 
Fig. 9. Fast k-NN process 
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3.2 System Configuration Diagram 
Based on the above-mentioned proposals, the designed system is shown in Fig. 10. 
 

 
Fig. 10. Proposed System Configuration Diagram 

 
In the training phase, the training data is clustered, the center nodes selected for each cluster 
are managed by Center Summary Data, and the group nodes in the same cluster are sorted and 
arranged in descending order of similarity with the central node. The test data can be analyzed 
at high speed using the cluster data and the Fast k-NN algorithm. 

4. Experiment 
The Fast k-NN proposed in this paper operates basically in linux environment and tested in 
virtual environment of windows host. We configured a virtual environment of 2GB RAM and 
ubuntu 16.04 environment on 1.80GHz dual core CPU, 8GB ram and windows 10 
environment host. Section 4.1 describes the dataset used in this paper and Section 4.2 
describes the performance measurement using Fast k-NN. 
 

4.1 Dataset 
A total of 6,526,885 data were clustered into 1,237 clusters. It uses a single-linkage clustered 
data set provided by Virusshare [13], an open malware collection channel. The training data is 
divided into several data sets for testing and is shown in Table 2 below. As a test data, 100 
data of some clusters in the data were randomly selected and used. 
 

Table 2. Dataset Configuration 
Dataset category Number of SSDEEP Number of clusters 

Dataset-1 6,526,885 1,237 
Dataset-2 2,997,380 300 
Dataset-3 202,443 40 
Dataset-4 103,251 25 

 

4.2 Fast k-NN Performance Measurement 
The test values were performed from the point of view of the number of similarity calculation 
comparisons to classify 100 test data of k-NN and Fast k-NN. Table 3 and Table 4 shows the 
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number of comparisons of average similarity required for classification of k-NN algorithm for 
each data set. 
 

Table 3. The number of k-NN and Fast k-NN similarity comparison operations(k=5) 
Dataset category k-NN Fast k-NN Fast k-NN/k-NN 

Dataset-1 6,526,885 19.71 0.0003% 
Dataset-2 2,997,380 14.82 0.0005% 
Dataset-3 202,443 9.98 0.0049% 
Dataset-4 103,251 7.94 0.0077% 

 
Table 4. The number of k-NN and Fast k-NN similarity comparison operations(k=3) 

Dataset category k-NN Fast k-NN Fast k-NN/k-NN 
Dataset-1 6,526,885 12.93 0.0002% 
Dataset-2 2,997,380 9.83 0.0003% 
Dataset-3 202,443 6.54 0.0032% 
Dataset-4 103,251 5.04 0.0049% 

 
In this way, the fast k-NN algorithm proposed in this paper can solve the problem of the time 
complexity that increases as the number of data increases due to the total number comparison 
of k-NN. As a result, the similarity calculation of SSDEEP took 0.001 seconds to compare one 
data. Therefore, the number comparison of k-NN requires a large number of similarity 
calculation. In the case of Fast k-NN, the time required for the calculation and the number of 
comparisons were increased as the k value increased. However, in the test environment, the 
number of comparisons was 2.0e-6 the performance of k-NN can be greatly improved. 
Table 5 shows the comparison results of k-NN algorithm and Fast k-NN algorithm per 
100,000 data sets for each data set. 
 

Table 5. The number of k-NN and Fast k-NN similarity comparison operations per 100K dataset 

Dataset category Num of data Number of comparisons per 100K 
Fast k-NN(k=3) Fast k-NN(k=5) 

Dataset-1 6,526,885 0.1983 0.3023 
Dataset-2 2,997,380 0.3288 0.4957 
Dataset-3 202,443 3.2700 4.9900 
Dataset-4 103,251 5.0400 7.9400 

 
In the Table 5, it can be seen that the number of comparison operations per 100,000 pieces 
decreases as the number of data increases. Dataset-1 is more than 25 times more efficient than 
Dataset-4 in terms of number of comparisons per 100,000. In conclusion, the Fast k-NN 
algorithm works more efficiently as the size of the dataset increases and as the value of k 
decreases. It is considered that these test results can improve the disadvantage of the k-NN 
algorithm, which is drastically degraded as the training data increases. 

5. Conclusion 
The current security industry is in an environment where a large number of malicious codes 
are distributed indiscriminately. Malicious code research using machine learning algorithms is 
meaningful as a precautionary measure rather than a post - treatment to cope with an 
overwhelming number of malicious codes. On the other hand, malicious codes can be 
regarded as unstructured data in general, and there is a difficulty in handling outliers in case of 
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machine learning based malicious code classification. The k-NN algorithm has the advantage 
of less influence on the tendency or outliers of data compared to other algorithms by 
classifying the training data into k adjacent label values. However, the major disadvantage of 
the k-NN algorithm is that the time complexity increases significantly as the learning data 
increases. Therefore, in this paper, we propose a Fast k-NN algorithm to mitigate the 
computation speed problem of the k-NN algorithm. It is expected that the advantages of 
unstructured data and computation speed problem will be solved at a certain level. 
When the proposed Fast k-NN algorithm is evaluated using 6,526,885 Virusshare datasets, it 
can be processed with 2.0e-6 comparisons than the computation required for total comparison 
based on the tested environment. The proposed Fast k-NN algorithm has advantages of the 
k-NN algorithm and greatly improved the computation speed. It can also be used to search all 
data that can be vectorized as well as malware and SSDEEP. In the future, it is expected that if 
the k-NN approach is needed, and the central node can be effectively selected for clustering of 
large amount of data in various environments, it will be possible to design a sophisticated 
machine learning based system.  
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